hadoop组成
hdfs架构
namenode:存储文件的元数据
datanode: 存储文件块数据
文件块大小,2以前64M,2之后是128M
secondary namenode:监控hdfs状态的辅助后台程序,每隔一段时间获取元数据的快照
hdfs写数据流程
1)客户端通过Distributed FileSystem模块向NameNode请求上传文件,NameNode检查目标文件是否已存在,父目录是否存在。
2)NameNode返回是否可以上传。
3)客户端请求第一个 Block上传到哪几个DataNode服务器上。
4)NameNode返回3个DataNode节点,分别为dn1、dn2、dn3。
5)客户端通过FSDataOutputStream模块请求dn1上传数据,dn1收到请求会继续调用dn2,然后dn2调用dn3,将这个通信管道建立完成。
6)dn1、dn2、dn3逐级应答客户端。
7)客户端开始往dn1上传第一个Block(先从磁盘读取数据放到一个本地内存缓存),以Packet为单位,dn1收到一个Packet就会传给dn2,dn2传给dn3;dn1每传一个packet会放入一个应答队列等待应答。
8)当一个Block传输完成之后,客户端再次请求NameNode上传第二个Block的服务器。(重复执行3-7步)。
hdfs读数据流程
1)客户端通过Distributed FileSystem向NameNode请求下载文件,NameNode通过查询元数据,找到文件块所在的DataNode地址。
2)挑选一台DataNode(就近原则,然后随机)服务器,请求读取数据。
3)DataNode开始传输数据给客户端(从磁盘里面读取数据输入流,以Packet为单位来做校验)。
4)客户端以Packet为单位接收,先在本地缓存,然后写入目标文件。
NameNode和SecondaryNameNode
工作机制
- 第一阶段:NameNode启动
(1)第一次启动NameNode格式化后,创建Fsimage和Edits文件。如果不是第一次启动,直接加载编辑日志和镜像文件到内存。
(2)客户端对元数据进行增删改的请求。
(3)NameNode记录操作日志,更新滚动日志。
(4)NameNode在内存中对数据进行增删改。
2. 第二阶段:Secondary NameNode工作
(1)Secondary NameNode询问NameNode是否需要CheckPoint。直接带回NameNode是否检查结果。
(2)Secondary NameNode请求执行CheckPoint。
(3)NameNode滚动正在写的Edits日志。
(4)将滚动前的编辑日志和镜像文件拷贝到Secondary NameNode。
(5)Secondary NameNode加载编辑日志和镜像文件到内存,并合并。
(6)生成新的镜像文件fsimage.chkpoint。
(7)拷贝fsimage.chkpoint到NameNode。
(8)NameNode将fsimage.chkpoint重新命名成fsimage。
namenode故障处理
1.删除数据直接复制:杀掉namenode,删除数据,复制secondary namenode数据到namenode,重启
2.使用-importCheckpoint选项启动NameNode守护进程,从而将SecondaryNameNode中数据拷贝到NameNode目录中:
bin/hdfs namenode -importCheckpoint
datanode
工作机制
1)一个数据块在DataNode上以文件形式存储在磁盘上,包括两个文件,一个是数据本身,一个是元数据包括数据块的长度,块数据的校验和,以及时间戳。
2)DataNode启动后向NameNode注册,通过后,周期性(1小时)的向NameNode上报所有的块信息。
3)心跳是每3秒一次,心跳返回结果带有NameNode给该DataNode的命令如复制块数据到另一台机器,或删除某个数据块。如果超过10分钟没有收到某个DataNode的心跳,则认为该节点不可用。
4)集群运行中可以安全加入和退出一些机器。
yarn架构
mapreduce架构概述
mapreduce将计算过程分成两个阶段:
1)map阶段并行处理输入数据
2)reduce阶段对map结果进行汇总
常用数据类型:
Java类型 | Hadoop Writable类型 | writable |
---|---|---|
boolean | BooleanWritable | |
byte | ByteWritable | |
int | IntWritable | |
float | FloatWritable | |
long | LongWritable | |
double | DoubleWritable | |
String | Text | |
map | MapWritable | |
array | ArrayWritable |
mr编程(mapper,reducer,driver)
示例代码:
driver
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
/**
Driver驱动
*/
public class WordcountDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
// 1 获取配置信息以及封装任务
Configuration configuration = new Configuration();
Job job = Job.getInstance(configuration);
// 2 设置jar加载路径
job.setJarByClass(WordcountDriver.class);
// 3 设置map和reduce类
job.setMapperClass(WordcountMapper.class);
job.setReducerClass(WordcountReducer.class);
// 4 设置map输出
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
// 5 设置最终输出kv类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
// 6 设置输入和输出路径
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
// 7 提交
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
}
mapper
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class WordcountMapper extends Mapper<LongWritable, Text, Text, IntWritable>{
Text k = new Text();
IntWritable v = new IntWritable(1);
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
// 1 获取一行
String line = value.toString();
// 2 切割
String[] words = line.split(" ");
// 3 输出
for (String word : words) {
k.set(word);
context.write(k, v);
}
}
}
reducer
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class WordcountReducer extends Reducer<Text, IntWritable, Text, IntWritable>{
int sum;
IntWritable v = new IntWritable();
@Override
protected void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException {
// 1 累加求和
sum = 0;
for (IntWritable count : values) {
sum += count.get();
}
// 2 输出
v.set(sum);
context.write(key,v);
}
}
自定义bean对象实现序列化接口(Writable)
具体实现bean对象序列化步骤如下7步。
(1)必须实现Writable接口
(2)反序列化时,需要反射调用空参构造函数,所以必须有空参构造
public FlowBean() {
super();
}
(3)重写序列化方法
@Override
public void write(DataOutput out) throws IOException {
out.writeLong(upFlow);
out.writeLong(downFlow);
out.writeLong(sumFlow);
}
(4)重写反序列化方法
@Override
public void readFields(DataInput in) throws IOException {
upFlow = in.readLong();
downFlow = in.readLong();
sumFlow = in.readLong();
}
(5)注意反序列化的顺序和序列化的顺序完全一致
(6)要想把结果显示在文件中,需要重写toString(),可用”\t”分开,方便后续用。
(7)如果需要将自定义的bean放在key中传输,则还需要实现Comparable接口,因为MapReduce框中的Shuffle过程要求对key必须能排序。详见后面排序案例。
@Override
public int compareTo(FlowBean o) {
// 倒序排列,从大到小
return this.sumFlow > o.getSumFlow() ? -1 : 1;
}
示例
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.Writable;
// 1 实现writable接口
public class FlowBean implements Writable{
private long upFlow;//上行流量
private long downFlow;//下行流量
private long sumFlow;//总流量
//2 反序列化时,需要反射调用空参构造函数,所以必须有
public FlowBean() {
super();
}
public FlowBean(long upFlow, long downFlow) {
super();
this.upFlow = upFlow;
this.downFlow = downFlow;
this.sumFlow = upFlow + downFlow;
}
//3 写序列化方法
@Override
public void write(DataOutput out) throws IOException {
out.writeLong(upFlow);
out.writeLong(downFlow);
out.writeLong(sumFlow);
}
//4 反序列化方法
//5 反序列化方法读顺序必须和写序列化方法的写顺序必须一致
@Override
public void readFields(DataInput in) throws IOException {
this.upFlow = in.readLong();
this.downFlow = in.readLong();
this.sumFlow = in.readLong();
}
// 6 编写toString方法,方便后续打印到文本
@Override
public String toString() {
return upFlow + "\t" + downFlow + "\t" + sumFlow;
}
public long getUpFlow() {
return upFlow;
}
public void setUpFlow(long upFlow) {
this.upFlow = upFlow;
}
public long getDownFlow() {
return downFlow;
}
public void setDownFlow(long downFlow) {
this.downFlow = downFlow;
}
public long getSumFlow() {
return sumFlow;
}
public void setSumFlow(long sumFlow) {
this.sumFlow = sumFlow;
}
}
Hadoop参数调优
1.dfs.namenode.handler.count==20×〖log〗_e^(Cluster Size)
默认值10,NameNode有一个工作线程池,用来处理不同DataNode的并发心跳以及客户端并发的元数据操作,对于大集群或者有大量客户端的集群来说,通常需要增大参数
2.yarn参数调优,提高内存利用率:
单个任务可以申请的最大内存大小,和Hadoop单个节点可用内存大小